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colors. By considering deep inelastic scattering on a weakly bound two-nucleon system,

we carefully follow the logic of the AGK cutting rules and show, for the single inclusive

cross section, that, due to the reggeization of the gluon, modifications of the AGK cutting

rules appear. As our main result, we investigate and calculate the jet production vertex

in the presence of a two-Pomeron cut correction. Compared to previous studies, we find a

novel structure of the jet vertex which has not been considered before. We discuss a few

implications of this new piece.
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1. Introduction

High gluon densities and saturation in high energy QCD have attracted much interest in

recent years. Experimental evidence has been discussed in connection with both HERA

and RHIC data, and with the advent of the LHC there will be interest in signals for

high densities also in proton-proton collisions. In this context inclusive jet production

plays a central role: whereas for moderate values of longitudinal momenta, x1 and x2, the

cross sections for inclusive jet production will be described by collinear factorization and

leading twist parton densities, the forward region may require substantial corrections. The

LHC will allow, close to the forward direction of one of the protons, a very asymmetric

configuration of jet or Drell-Yan production, for example x1 ≪ x2. This leads, for not

too high momenta of jets, to very small values of x1, and may require multiple exchanges

between the produced jet and proton ’1’ (figure 1). In more physical terms, the produced

jet may originate from a configuration where the density of gluons from proton ’1’ is high.

It is therefore important to provide, from the theoretical side, cross section formulae which

allow to incorporate multiple exchanges between the produced jet and the proton. Within

the collinear approximation, these corrections belong to higher twist and are suppressed
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Figure 1: Forward jet in pp collisions.

by powers of the jet transverse momentum. However, at small x, resummation of powers

of ln 1/x are expected to partly compensate such a suppression. It may therefore be more

suitable to start within the BFKL approach. It is also this approach which, in deep inelastic

electron-proton or electron-nucleus scattering, provides the framework for the discussion

of high gluon densities and saturation.

In this paper we make an attempt to address, within the BFKL framework in mo-

mentum space, for finite Nc, the issue of multiple interaction in inclusive jet production.

As a theoretical framework we use the scattering of a virtual photon on a nuclear target

consisting of two (different) nucleons (figure 2): the energy discontinuity of this process

consists of different classes of final states, and within these final states we fix one gluon

which generates the jet. In particular, we search for the jet vertex illustrated in figure 1a–c,

where below the jet vertex we have to sum over all possible cuttings. It will turn out that

the vertex is more complicated than suggested by figure 1.

The single inclusive jet cross section, mostly in the large-Nc limit approximation, has

been studied before in [1 – 6]. Whereas the first study [1] had explicitly been based upon

the AGK [7] cutting rules (see also [8, 9] for a QCD analysis), it was then in [2] observed

that the emission of the jet inside the triple Pomeron vertex might lead to deviations from

the AGK rules. Results of [2] have been supported in [3, 4]. In [5] a new investigation

was reported, more detailed than [1] but still based upon assumptions, which lead to the

discovery of new contributions to the effective production vertex. An improved and more

accurate investigation was given more recently in [6]. Whereas the calculations reported

in [2 – 4] have been done in configuration space, the studies in [1, 5, 6] were done in mo-

mentum space, and their method is similar to the one used in this paper. Nevertheless,

our results, which - in contrast to [1, 5, 6] - are valid for an arbitrary number of colors, are

in partial conflict with those of [6].
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Figure 2: Scattering of a virtual photon on a weakly bound nucleus.

Figure 3: Kinematics of the 3 → 3 process.

2. The strategy

We consider deep inelastic scattering on a nucleus consisting of two weakly bound nucle-

ons (figure 2). The total cross section is obtained from the elastic scattering amplitude,

Tγ∗(pn)→γ∗(pn):

σtot
γ∗(pn)→γ∗(pn) =

1

S
ImTγ∗(pn)→γ∗(pn). (2.1)

where S denotes the total energy of the scattering process. Before we consider the inclusive

cross section we find it useful to recapitulate the computation of the total cross section.

The kinematics is illustrated in figure 3: the energy variables s1 = (q+p1)
2, s2 = (q+p′2)

2,

M2 = (q+p1−p
′
1)

2, S = (q+p1 +p2)
2 are assumed to be much larger than the momentum

transfer variables t = (q − q′)2, t1 = (p1 − p′1)
2, t2 = (p2 − p′2)

2. We will distinguish

between s1 and s2, but at the end we set s1 = s2 = s ≫ M2 and t = 0. Throughout

this paper we use Sudakov variables with the lightlike reference vectors q′ and p, such that

s = 2p′q = 2pq, S = 4pq = 2s, q = q′ − xp with x = 2pq/Q2 and M2 = xP s. Neglecting

the nucleon masses we have

p1 = p2 = p, p′1 = p(1 − xP ) + p1⊥, p
′
2 = p(1 + xP ) + p2⊥. (2.2)
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Figure 4: Different energy cuts: (a) diffractive cut, (b) single cut, (c) double cut.

Internal momenta are then written as

ki = αiq
′ + βip+ ki⊥ (2.3)

with k2
i⊥ = −k2

i . The fact that the two nucleons are in a weakly coupled bound state implies

that we will allow the two nucleons to have small losses of longitudinal and transverse

momenta, i.e. we will integrate over xP and p1⊥ = −p2⊥ = k⊥.

2.1 The total cross section

For the total cross section we will be interested in the imaginary part of the amplitude

Tγ∗(pn)→γ∗(pn)(s1, s2,M
2; t1, t2, t), integrated over xP and p1⊥ = −p2⊥ = k⊥. Following

the discussion in [7], this imaginary part consists of the three contributions illustrated in

figure 4. They are often referred to as ’diffractive cut’ (figure 4a), ’single cut’ (figure 4b),

and ’double cut’ (figure 4c). The total cross section is obtained from the sum of these

terms, where we have to observe that, in figure 4a, we have to add the configuration where

the nucleons 1 and 2 are interchanged. Similarly, in figure 4b the cut line can pass through

nucleon 1 or 2, and for both configurations we also have to add their complex conjugates.

Finally, in figure 4c we show two of the four configurations; the remaining ones are obtained

by interchanging nucleons 1 and 2.

Let us analyse these contributions in more detail. In all cases we encounter subampli-

tudes, A4(k1, β1,k2, β2,k3, β3,k4, β4) (figure 5), which differ from each other by the way

in which the β integrals are done.

Gluons 1,. . . 4 are labelled from the left to the right. In figure 4a, gluons 1 and 2 will

couple to nucleon 1, and gluons 3 and 4 to nucleon 2; in figure 4c1 gluons 1 and 4 are

attached to nucleon 1, and gluons 2 and 3 to nucleon 2. The variables βi (with
∑

βi = 0)

denote the β components of the gluons, which are integrated, and which can be interpreted

as (dimensionless) energy variables of the subamplitudes. For the moment we will ignore the

color indices of the gluons. To begin with figure 4a, we introduce xP = β1 +β2 = −β3 −β4

and consider, as integration variables, xP , β1, and β3. With M2 = sxP , the discontinuity in

figure 4a indicates that, for the diffractive cut, we are integrating across the discontinuity
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Figure 5: A subamplitude of figure 4.

Figure 6: Integration contours.

in xP . Obviously, M denotes the invariant mass of the process: photon + (gluon 1 +

gluon 2) → photon + (gluon 3 + gluon 4). The remaining β variables, β1 and β3 are inside

the ladders to the right and to the left hand side of the energy cut, and the integration

contours are taken along the real axis. In figure 4b, it is the variable β1 in which we take

the discontinuity, and the contour goes around the right hand cut, whereas the other β

variables (including xP ) run along the real axis. Here sβ1 denotes the squared energy of

the subprocess: photon + gluon 1 → photon + (gluon 2 + gluon 3 + gluon 4). Finally, in

figure 4c1 we introduce β = β1 +β3 as the subenergy variable in which the discontinuity is

taken, and its integration goes around the right hand cut. At this stage, the subamplitudes

of figures 4a–c are different from each other.

Provided that in all three cases the subamplitude A4, taken as a function of the three

independent β variables, falls off sufficiently fast for large |β|, one can redraw the contour

containing the discontinuity along the real axis (figure 6b). Furthermore, we need the

amplitudes to be symmetric under permutations of the gluons. If all these conditions are

satisfied, all three cases can be reduced to one and the same integral, where all three

β-integrations run along the real axis:

N4(k1,k2,k3,k4) =

∫

dβ1

∫

dβ2

∫

dβ3A4(k1, β1,k2, β2,k3, β3,k4, β4), (2.4)

and the function N4 is symmetric under permutations of the gluons. Alternatively, N4 can

be written as a triple discontinuity integral and is, therefore, a real-valued function. This

– 5 –



J
H
E
P
0
6
(
2
0
0
8
)
0
3
2

is what is required for the AGK rules to be valid.

Applying this discussion to figures 4a–c, it is then clear that all three different cuts,

after integration over xP , will have the same expression for the subamplitude, N4, and they

differ from each other only by the phases for the ladders below. This allows, to write the

sum of all three terms in the simple form:

2ImT =2Sσtot = S

∫

dxP

∫

dµ({k}) ImTγ∗(pn)→γ∗(pn) =

=

∫

dω

2πi
eωY

∫

dω1

2πi

∫

dω2

2πi

∫

dµ({k})

(2π)6
2πiδ(ω − ω1 − ω2)N4

·
[

ξ(ω1)ξ(ω2)
∗ + ξ(ω2)ξ(ω1)

∗

+ 2Imξ(ω1) (iξ(ω2) + (iξ(ω2))
∗) + 2Imξ(ω2) (iξ(ω1) + (iξ(ω1))

∗)

+ 4Imξ(ω1Imξ(ω2)
]

⊗ Φ1,2({k}), (2.5)

where y = lnS, and k is the momentum transfer of nucleon 1 and we have consid-

ered the kinematics corresponding to the measure dµ({k}) = d2k1d
2k2d

2k3d
2k4δ

(2)(k1 +

k2)δ
(2)(k3 + k4). The signature factors have the form

ξ(ω) =
1 − e−iπω

sinπω
, (2.6)

and Φ1,2({k}) contains the two nucleon form factors and the deuteron wave function (in-

cluding the integration over the α-variables). In the large-Nc limit, the subamplitude N4

will contain the product of two Pomeron propagators, G2(k1, ω1) and G2(k3, ω2), which

couple to nucleons 1 and 2, resp. Eq. (2.5) can also be written in the more familiar form:

2ImT =2Sσtot = S

∫

dxP

∫

d2k ImTγ∗(pn)→γ∗(pn) =

=

∫

dω

2πi
eY ω

∫

dω1

2πi

∫

dω2

2πi

∫

dµ({k})

(2π)6
2πiδ(ω − ω1 − ω2)N4

· 2Im
[

(−i)(iξ(ω1))(iξ(ω2))
]

⊗ Φ1,2({k}), (2.7)

in agreement with the AGK argument.

In a practical calculation of the total cross section, we compute the three different

cut contributions in figure 4, term by term. In each term we have to calculate production

amplitudes on both sides of the cutting line, evaluate the unitarity integrals, and then

sum over the intermediate states. As a result, we should find that the subamplitudes

in all three cases, in fact, are equal and symmetric under permutations: otherwise the

assumptions stated above would prove to be incorrect.

As to the calculation of the production amplitudes, we can show that they also can be

derived from discontinuities in their own energy variables. Beginning with figure 4a and

concentrating on the phases, we have, on the lhs of the cutting line, the production ampli-

tude illustrated in figure 7a: In the leading logarithmic approximation, it is proportional

to its energy discontinuity, shown in figure 6b. Symbolically:

T = ξ(ω1)discT. (2.8)
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Figure 7: Construction of figure 4a: (a) production amplitude; (b) energy discontinuity of the

production amplitude; (c) triple energy discontinuity

Figure 8: Multiple energy discontinuity.

The same argument applies to the rhs of the cutting line in figure 4a (with ξ(ω1) → ξ(ω2)
∗).

Together, the single discontinuity from which we have started can be expressed in terms of

the triple discontinuity (figure 7c). The analytic expression for this contribution, therefore,

is the same as for the first term in (2.5), with N4 being replaced by the triple discontinuity

illustrated in figure 8: In this triple discontinuity, all the β integrals are closed on the rhs,

analogous to figure 6a. Because of the assumptions for the large-β behavior, we can redraw

the contours as in figure 6b, and the triple discontinuity coincides with N4.

For the next term, figure 4b, the situation is similar, although a bit more complicated.

We illustrate the situation in figure 9: Figure 9a illustrates the production amplitude we

need to find. It has the phase structure (−i)(i)(iξ(ω1)), and we can find it from its energy

discontinuity, provided the amplitude above satisfies the assumptions stated before (good

behavior for large β, and symmetry under the exchange of gluons). Following the AGK

arguments, the energy discontinuity consists of the two parts shown in figures 9b and c.

The first one has the phase ξ(ω1) + ξ(ω1)
∗, whereas the second one vanishes (after adding

the analogous contribution with the the cut ladder on the rhs and the single exchange on

the lhs). As a result, the production amplitude is proportional to its triple discontinuity

in figure 9d, and, returning to figure 4b, we obtain the second term of (2.5), with N4 being

replaced by the triple discontinuity of figure 8. But as we have already said, this triple
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Figure 9: Multiple energy discontinuity.

Figure 10: Multiple energy discontinuity.

discontinuity equals N4.

Finally the cuts in figure 4c1 and c2. In figure 10a we illustrate the production ampli-

tude to the left of the discontinuity line in figure 4c1. It contains a further cut (figure 10b),

and it is proportional to this discontinuity. As a function of β1, figure 10b presents the right

hand cut. An additional term (corresponding to figure 4c2) where nucleon 1 and 2 at the

lower end are interchanged, provides the left hand cut. When inserting these production

amplitudes into figure 4c1 and 4c2 and performing the β1 integrals, we close the contour

on the rhs and include figure 10b. As a result we find that the contribution figure 4c1 is

proportional to the triple discontinuity, and the phases can be read off from (2.5).

2.2 The single-gluon inclusive cross section

So far all our discussion has been for the total cross section. Turning to the single gluon

inclusive cross section, we find it convenient to assign the rapidity value y = 0 to the

virtual photon, and y = Y to the nucleons (i.e. in our figures, we draw the rapidity axis

downwards, starting from y = 0 at the upper photon and ending with Y at the target).

The rapidity of the inclusive jet will be denoted by y1 with 0 < y1 < Y , and its transverse

momentum by p.

– 8 –
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Figure 11: Different energy cuts: (a) diffractive cut, (b) single cut, (c) double cut.

For the calculation we follow the same procedure, i.e. we compute the discontinuities

in figure 4. But in all the three energy cuts in figures 4a–c, we now fix, in the sum over the

intermediate states, for one gluon the values of rapidity and transverse momentum y1 and

p, resp. This leads to the inclusive cross section illustrated in figures 11a–c. The crosses

mark the fixed final state gluon inside the unitarity sum. We then, again, have to compute

the production amplitudes on both sides of the cutting line and sum over the intermediate

states (keeping now the one final state gluon fixed). Since, before doing the summation

over the intermediate states, the production amplitudes are the same as for the total cross

section, we can proceed as outlined above, and we can make use of the results described

before. In particular, we have the same phases factors.

However, unlike the case of the total cross section described before, we can no longer

expect that the subamplitudes which appear in the three different cuttings are equal to

each other. On general grounds we have to expect that, when going from a fully inclusive

total cross section to a slightly less inclusive quantity, we loose part of the coherence and of

the cancellations. In our particular case, the equality of the subamplitudes in figures 11a–c

will, in fact, be lost. Our calculations described below will confirm this. Depending upon

where, inside the grey blob the fixed gluon is produced, there exist some contributions

where the equality still exists (and the AGK rules are valid), and others where it is not the

case. The inclusive cross section has, therefore, to be written in the following form:

dσ

dyd2p
=

∫

dω′

2πi
ey1 ω′

∫

dω

2πi
e(Y −y1) ω

∫

dω1

2πi

∫

dω2

2πi

∫

dµ({k})

(2π)6
2πiδ(ω − ω1 − ω2)

·
[

N c
4(1, 2|3, 4;p)ξ(ω1)ξ(ω2)

∗ +N c
4(3, 4|1, 2;p)ξ(ω2)ξ(ω1)

∗ +

+2Imξ(ω1) (N c
4(1|2, 3, 4;p) iξ(ω2) + c.c. ) +

+2Imξ(ω2) (N c
4(1, 2, 3|4;p) iξ(ω1) + c.c. ) +

+4N c
4(1, 3|2, 4;p)Imξ(ω1)Imξ(ω2)

]

· Φ1,2({k}), (2.9)

where the argument structure of the N4 indicates where the cutting line containing the

produced jet enters the subamplitude: for example, in N c
4(1, 2|3, 4;p), the line runs between

gluon 3 and 4. We find that, in general, the amplitudes N c
4 are different for different

positions of the cutting line. Here and in the following we suppress the dependence of the

N c
4 upon the variables ω′, ω, ω1, and ω2.
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Figure 12: Color configurations of t-channel gluons (a) general tensor structure; (b) two color

octet pairs; (c) one triplet of gluons in a color octet state.

Having given this general description of how to compute the total cross section and the

single jet inclusive cross section we now turn to QCD calculations. We first return to the

total cross section, for which we can make use of earlier results and review the main results

(a few more details will be given in the following section). The discussion of the inclusive

case - which represents the main result of this paper - will be presented in the following

section. We first need to address the question of the large-β behavior of the subamplitudes

in QCD. Here the gluon reggeization plays an important role. If we compute, in pQCD,

the subamplitude illustrated in figure 8, which, in total, is in color singlet state there will

be pieces in which, at the lower end, subsystems are in antisymmetric color octet states:

We expect that these pieces belong to the reggeization of the gluon: they do not satisfy

the naive Ward identies, i.e. they do not vanish when the transverse momentum, k⊥, of

one of the gluons goes to zero. Connected with the lack of the Ward identities, we expect

that also their high energy behavior does not satisfy the requirements listed above, i.e.

the large-β behavior does not allow to redraw the contour as indicated in figure 6. Conse-

quently, when computing the different pieces illustrated in figure 4, we will attempt to first

isolate and remove the potentially dangerous reggeizing pieces, and retain only those such

for which Ward identities and large-β behavior are in accordance with what has been pos-

tulated before. This goal is achieved by the decomposition described in [10] where, for the

subamplitueds D4 the reggeizing pieces, DR
4 , have been separated from the remaining part,

DI
4 . The latter ones, in fact, satisfy the Ward identities and are fully symmetric under per-

mutations of the outgoing gluons, whereas the former ones do not. Consequently we expect

(although this has not fully been proven yet) that also their large β behavior is ’good’.

After these general remarks it is fairly straightforward to follow the procedure outlined

above and to obtain the different cut contributions in figure 4. As an example, consider

figure 4a. On the lhs of the discontinuity line we need the set of production amplitudes

illustrated in figure 7a. Restricting ourselves to the (generalized) leading-log approximation

and to even signature in the lower t-channel, they contain only single energy discontinuities

(figure 7b), from which one easily reconstructs the full production amplitudes (by simply

– 10 –
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multiplying by iπ). Taking the square of these production amplitudes, we see that the triple

discontinuity is sufficient to obtain the energy discontinity in figure 4a (figure 7c). As seen

in figure 7c, there is a ’last’ interaction between the two lower ladders: the sum of all

diagrams above this last interaction (including the last rung) coincides with the amplitude

D4 analyzed in [10]. Using the separation D4 = DR
4 +DI

4 which has been described in detail,

and retaining only DI
4 , we arrive at the QCD result for the subamplitude in figure 4a, N4.

It is important to stress that this amplitude is completely symmetric under the exchange

of any two gluons below. In an analogous way one computes the other cut-contributions in

figures 4b and c. When adding figures 4a, b, and c and making use of the symmetry (under

permutations) of DI
4 : . we can combine all contributions figure 4a–c in the way outlined

above. The symmetry of the DI
4 under permutation of the lower gluons, together with

the fulfillment of the Ward identities can be viewed as strong hint that also the large-β

behavior satifies the requirements discussed before. This then allows, in particular, to draw

all three integration contours of figure 6 along the real axis: this property is required by

the AGK rules.

In the following section we turn to the inclusive cross section and compute the dis-

continuities shown in figures 11a–c. We repeat the same steps as those for the total cross

section, until we reach the analogue of D4. In particular,we

1. start from the triple discontinuites,

2. repeat the decomposition into ’reggeizing’and ’irreducible’ pieces, filtering out those

terms which do not satisfy the Ward identities and, hence, threaten to have a bad

large-β-behavior. This decomposition is different from the one carried out in [10] for

the total cross section, and it represents the main achievement of this paper.

3. The remaining terms (the analogue of DI
4) have to computed for each term in fig-

ure 11. We shall find that they satisfy the symmetry requirements and Ward identi-

tites, which, however, are less restrictive than in the case of the total cross section.

As a result, in the inclusive case the different subamplitudes in figures 11a–c, N c
4 , are

no longer identical. Our final cross section, therefore, will be written as in (2.9): it consist

of several pieces which cannot be combined in a simple way.

3. The cut amplitudes Nc

4
in QCD

3.1 Review of the total cross section

We begin with a brief review of the amplitudes N4 which enter the total cross section. As

we have stated above, we start from triple discontinuities and, in a second step, decompose

them into reggeizing pieces (which do not satisfy the Ward identities and have a ’bad large

β’ behavior), and a remainder with ’good properties’. In the notation of [10], they are

denoted by DR
4 and DI

4 , resp. In the context of this short review, we also introduce a

compact notation that will be used throughout the paper.

The triple discontiunuity, D4, is illustrated in figure 13. Here we have removed the

– 11 –
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Figure 13: Illustration of the triple discontinuity.

Figure 14: Integral equations for D2, D3, and D4.

couplings to the nucleons at the lower end: for figure 4a, we attach gluon 1 and 2 to nucleon

1 and gluon 3 and 4 to nucleon 2, for figure 4c we attach gluon 1 and 4 to nucleon 1 and so

on. However, provided the triple discontinuity (figure 8) is symmetric under the exchange

of the lower gluons, all terms in figure 4 are obtained from the same triple discontinuity,

and the order in which the gluons are attached to the two nucleons does not matter. The

summmation of all diagrams shown in figure 13 is done in terms of integral equations.

We introduce amplitudes D2 (associated to the BFKL evolution [11 – 13]) and D3 which,

together with D4, satisfy a set of coupled integral equations (figure 14).

Writing these equation as evolution equations in rapidity y = ln s, we find:

(∂y −H2)D2 =δ(y)D2;0 (3.1a)

(∂y −H3)D3 =δ(y)D3;0 + K3D2 (3.1b)

– 12 –
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(∂y −H4)D4 =δ(y)D4;0 + K4D2 +
123
K 3

··4
D3 +

124
K 3

·3·
D3 +

234
K 3

1··
D3 +

134
K 3

·2·
D3 (3.1c)

with the boundary conditions Dn(y) = 0 for y < 0. The notation used in these equations

should be clarified by writing an explicit example:

123
K3

··4
D3 = = K3(1, 2, 3; 1

′ , 2′) ⊗D3(1
′, 2′, 4) , (3.2)

where the convolution ’⊗’ denotes an integral in the transverse momentum space and

includes propagators. In our notation, the convolution acts on the primed variables. The

two dots above D3 denote those gluon variables on which K3 acts: D3 is a function of three

gluon variables, and K3 acts just on those which are marked by the dots. In our example,

this are the gluons 1 and 2, while the third gluon, 4, remains a spectator.

We now list the operators Kn and Hn appearing in (3.1a-c). The former [14, 15] are

integral kernels which describe the transition from 2 to n reggeized gluons in the t-channel.

The latter are the BKP hamiltonians [14 – 17], which generalize the BFKL hamiltonian

H2, and describe the interaction of a fixed number n of reggeized gluons; we will denote

their Green’s function Gn. All these objects are integral operators acting in the transverse

momentum and color spaces. The integral kernels Kn of Kn are:

Kn(k1,k2, . . . ,kn;k′
1,k

′
2) =

=
gn

(2π)3

(

k2
12...n −

k2
12...n−1k

′2
2

(k′
2 − kn)2

−
k2

23...nk′2
1

(k′
1 − k1)2

+
k′2

1 k′2
2 k2

2...n−1

(k′
1 − k1)2(k

′
2 − kn)2

)

,
(3.3)

and the action of Kn on a two point function φ(k1,k2) is given by

Knφ(k1, . . . ,kn) =

=

∫

d2k′
1d

2k′
2

k′2
1 k′2

2

δ(2)(k1...n − k′
12)Kn(k1, . . . ,kn;k′

1,k
′
2)φ(k′

1,k
′
2) .

(3.4)

We have introduced the notation kijk... = ki + kj + kk + · · · for the sum of transverse

momenta. The Lipatov kernel K2 is can be obtained from K3(k1,0,k2), where the last

term in (3.3) vanishes. In the color space these integral operators are multiplied by color

tensors originating from the gluon vertices:

fa′

1
a1b1f b1a2b2 . . . f bn−1ana′

2Knφ
a′

1
a′

2 . (3.5)

The virtual corrections are encoded in the gluon Regge trajectory function ω, whose

action on a function φ is multiplicative in momentum space:

i
ω φ(k1,k2) = −

Nc

2
ω(ki)φ(k1,k2) i = 1, 2 , (3.6)

with the function ω(k) being1

ω(k) =
g2

(2π)3

∫

d2k′ k2

k′2(k − k′)2
. (3.7)

1A regularization of the IR divergences is understood.
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The BKP hamiltonians Hn are defined as

Hn =
n
∑

i=1

i
ω +

∑

1≤i<j≤n

~ti · ~tj
ij

K2 , (3.8)

where we have introduced the SU(Nc) generators in the adjoint representation ~ti =
t(t1

aia
′

i
, . . . , t

N2
c −1

aia
′

i

) with tb
aia

′

i
= ifaiba

′

i . The BKP Green’s functions Gn satisfy the equa-

tions

(∂y −Hn) Gn(y) = δ(y) , (3.9)

with the formal solutions

Gn(y) = Θ(y)eyHn . (3.10)

The action of H2 on a color singlet function φa1a2 = δa1a2φ gives the BFKL

hamiltonian:

H2φ
a1a2 = δa1a2

(

1
ω +

2
ω −NcK2

)

φ . (3.11)

When acting, in a color octect state, on a function which depends only on the sum of

transverse momentum of the two gluons: ψa1a2 = fa1a2bψ̃b(k12), the hamitonian leads to

the bootstrap equation:

H2ψ
a1a2 = −

Nc

2
ω(k12)ψ

a1a2 . (3.12)

Finally, the initial conditions Dn;0 are the lowest order impact factors for the coupling

of n reggeized gluons to the external photon at rapidity y = 0. These couplings are given

by a simple quark loop.

Eq. (3.1a) is just the BFKL equation [11 – 13], starting from the initial condition D2;0.

Its solution, formally given by

D2(y) = G2(y)D2;0 , (3.13)

can be solved explicitly, thanks to the invariance of the BFKL equation under Möbius

transformation [18, 19]. It satisfies the Ward identity, i.e. it vanishes as one of the gluons

carries zero momentum, and it is symmetric under the exchange of the two gluons. This

property is crucial to have the possibility to obtain a dual description, the dipole picture [20,

21], as has been discussed in [22].

Green’s functions for a higher number n of reggeized gluons have been widely stud-

ied: the case n = 3 is associated to the Odderon exchange and is a completely inte-

grable problem [23]; the solutions have been found [24, 25] and physical amplitudes con-

structed [26, 27]. For n ≥ 4 the kernels lead to an integrable problem only in the planar

limit [23, 28 – 30] whereas even the estimate of non planar corrections is an extremely dif-

ficult problem [31, 32]. Let us note that the integrability found in this framework is the

first example of integrable structures present in gauge theories and now such symmetries

are deeply investigated in the framework of the AdS/CFT correspondence between N = 4

SYM theories and superstring sigma models.

Let us continue to discuss the results for the case discussed, wherein the number of

reggeizing gluons in the t-channel may change. For the amplitudes D3 and D4 it will be
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Figure 15: Illustration of DR
4 .

necessary to isolate the reggeizing pieces. Beginning with D3, the particular form of D3;0

in eq. (3.1b) allows to write the solution in the following form:

D3 =
g

2
fa1a2a3

(

(12)3

D2 −
(13)2

D2 +
1(23)

D2

)

=
1

2









+ +









. (3.14)

Here we have introduced the notation
(12)3

D2 = D2(k12,k3). D3 is said to be “reggeized”, in

the sense that a real three gluon state never appears until the last step of the evolution,

when the three gluon state is reached through a local splitting of one of the reggeized

gluons. It is easy to see that D3, as a function of its three gluon momenta and color

labels, (i) does not satify the Ward identities (i.e. it does not vanish as k2 goes to zero);

(ii) individual terms are not symmetric under permutations of the gluons.

D4 is more involved, and it contains both a reggeized part DR
4 and an irreducible one

DI
4 ,

D4 = DR
4 +DI

4 . (3.15)

This decomposition, from a diagrammatic point of view, is nothing but a reordering of

the sum of diagrams in figure 13. In the triple discontinuity illustrated in figure 13. each

horizontal line (or vertex) denotes an on-shell gluon, and each vertical wavy line a reggeized

gluon. After the rearrangement we end up with the two terms of (3.15). The first term,

DR
4 , is illustrated in figure 15: In detail, its structure is inferred from the initial condition:

D4;0 = − g2da1a2a3a4

(

(123)4

D2;0 +
1(234)

D2;0 −
(14)(23)

D2;0

)

+

− g2da1a2a4a3

(

(124)3

D2;0 +
2(134)

D2;0 −
(12)(34)

D2;0 −
(13)(24)

D2;0

)

,

(3.16)

and has the same form:

DR
4 = − g2da1a2a3a4

(

(123)4

D2 +
1(234)

D2 −
(14)(23)

D2

)

+

− g2da1a2a4a3

(

(124)3

D2 +
2(134)

D2 −
(12)(34)

D2 −
(13)(24)

D2

)

,

(3.17)

The remainder, DI
4 , is illustrated in figure 16:
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Figure 16: Illustration of DI
4 .

It has the appealing form:

DI
4(y) =

∫ y

0
dy′ G4(y − y′)V4D2(y

′) . (3.18)

where the effective 2-to-4 vertex, V4, when acting on the space of 2-gluon gauge invariant

functions, has remarkable properties:

(i) it is infrared safe,

(ii) vanishes whenever one of the gluon momenta goes to 0: (Ward identities),

(iii) is completely symmetric in the 4 gluons and

(iv) is Möbius invariant.

The explicit expression for V4, first obtained in [10], can be found in appendix A.2. It is

these ’good’ properties which support the expectation that the assumptions listed above

are, in fact, satisfied. Finally we note that the vertex V4 in figure 16 contains disconnected

(virtual) parts: they are analogous to the ’virtual’ pieces inside the BFKL kernel which

have their origin in the gluon trajectory function and do not contribute to s-channel gluon

production.

So far we have given attention only to the irreducible pieces, DI
4 , which, because of

their ’good’ properties, represent the building blocks of the two-ladder contributions. The

reggeizing pieces, DR
4 , provide a different class of corrections to Tγ∗(pn)→γ∗(pn). First we

remind that these subamplitudes (figure 12), when considered as function of the gluon

momenta, do not satisfy Ward identities and symmetry properties. However, as function

of reggeon momenta (e.g., in a piece of the the second term in figure 15,
(12)(34)

D2;0 , as func-

tion of k1 + k2), we again have the good properties (Ward identities). In this sense, the

reggeizing pieces DR
4 can be viewed as higher order corrections to D2. Their contribution

– 16 –
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Figure 17: Illustration of DI
4
.

to Tγ∗(pn)→γ∗(pn) is illustrated in figure 17: They contribute to the double cut, and they

introduce higher order color correlators inside the two-nulceon target. This way of clas-

sifying corrections due to single, double, triple . . . ladder exchanges can be viewed as a

hierarchy: when generalizing the analysis of D4 to D6, the reggeizing pieces of D6 contain

contributions with four reggeizing gluons which, in the scattering of a photon on a nucleus

with three gluons, will provide a two-ladder correction with higher correlators inside the

three nucleon target. The analysis of D6 has been started in [33].

3.2 The single-jet inclusive cross section: integral equations

After these preparations we now turn to the main part of this paper, the calculation of

the 1-jet inclusive cross section. Following the discussion in section 2, we again consider

the triple discontinuities of figure 13, keeping in mind that, for the inclusive jet cross

section, one s-channel gluon is kept fixed, both in rapidity and in transverse momentum.

Depending upon the position of the s-cut line (figure 11) we are considering, the gluon with

fixed kinematics, in figure 13, can belong to the left, the central, or the right hand cut: we

will label these three possibilities by a subscript j = 1, 2, 3, resp. Furthermore, inside the

three different classes of contributions of figure 14 the gluon can appear at different places,

inside a transition kernel or inside a rung connecting two t-channel gluons of a two-gluon,

a three-gluon or of a four-gluon state.

Following [34], we define the triple discontinuities for single jet production, jZn, where

j indicates the position of the s-channel cut to which the jet belongs.2 Later on, we will

relate jZ4 to the subamplitudes N c
4 . They are functions of:

• the rapidity differences y1 between the external photon and the emitted jet and the

difference Y − y1 between the jet and the reggeized gluons;

• the tranverse momentum p1 of the produced jet;

• the tranverse momenta ki of the reggeized gluons;

• the photon virtuality and polarization, encoded in the impact factors.

2Such a notation is suited for an easy generalization to the case of m-jet production: m
j Zn. In [34] a

tecnique based on generating functionals has been devised for the computation of the evolution equations

for couplings with an arbitrary number of jets produced.
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In the following we will omit to write these variables explicitely, unless it is necessary or

we feel that their explicit appearance would clarify the meaning of the expressions.

The summation of all diagrams will be organized in integral equations as follows. We

concentrate on the evolution below the jet, i.e. y > y1. For this evolution we define, as

initial conditions, iZn;0, the sum of all diagrams above the jet vertex (including the vertex),

such that the gluon generating the jet is inside the lowest kernel or rung. It is then easy

to see that the equations for n = 2, 3, 4 read:3

(∂y −H2) Z2 =δ(y − y1) Z2;0 , (3.19a)

(∂y −H3) iZ3 =δ(y − y1) iZ3;0 +
123
K 3

··

Z2 , i = 1, 2 (3.19b)

(∂y −H4) iZ4 =δ(y − y1) iZ4;0 + K4 Z2+

+
123
K3

··4

1Z3 +
124
K3

·3·

1Z3 +
234
K3

1··

2Z3 +
134
K3

·2·

2Z3 , i = 1, 2, 3 (3.19c)

They are similar to the equations for the inclusive couplings Dn ≡ 0Zn in (3.1a-c), the only

difference being the initial conditions.

Let us look in more detail at the initial conditions iZn;0. As a new ingredient we need

to introduce the cut operators j /Kn: they are the cut counterpart of (3.4) in which the

transverse momentum of the s-channel gluon exchanged between the reggeized gluons j

and j + 1 has been fixed to p; we still sum over its color degree of freedom. Its explicit

action is defined as

j /Knφ(p;k1, . . . ,kn) =
j + 1j

=

=
Kn(k1, . . . ,kn;k1...j + p,kj+1...n − p)

(k1...j + p)2(kj+1...n − p)2
φ(k1...j + p,kj+1...n − p) ,

(3.20)

and in the color space we have the same tensor as in (3.5). With these cut kernels, the

initial conditions appearing in the evolution equations (3.19a-c) are given by the following

3Note that Z2 ≡ 1Z2 since there is only one possible cut.
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integral equations:4

Z2;0 = /K2D2 , (3.21a)

1Z3;0 =
12

/K2

··3
D3 +

13

/K2

·2·
D3 +

123

1 /K3

··

D2 , (3.21b)

2Z3;0 =
23

/K2

1··
D3 +

13

/K2

·2·
D3 +

123

2 /K3

··

D2 , (3.21c)

1Z4;0 =
12

/K2

··34
D4 +

13

/K2

·2·4
D4 +

14

/K2

·23·
D4 +

+
123

1 /K3

··4
D3 +

124

1 /K3

·3·
D3 +

134

1 /K3

·2·
D3 +

1234

1 /K4

··

D2 , (3.21d)

2Z4;0 =
13

/K2

·2·4
D4 +

14

/K2

·23·
D4 +

23

/K2

1··4
D4 +

24

/K2

1·3·
D4 +

+
123

2 /K3

··4
D3 +

124

2 /K3

·3·
D3 +

234

1 /K3

1··
D3 +

134

1 /K3

·2·
D3 +

1234

2 /K4

··

D2 , (3.21e)

3Z4;0 =
14

/K2

·23·
D4 +

24

/K2

1·3·
D4 +

34

/K2

12··
D4 +

+
234

2 /K3

1··
D3 +

134

2 /K3

·2·
D3 +

124

2 /K3

·3·
D3 +

1234

3 /K4

··

D2 . (3.21f)

The notation is the same as in section 3.1, except for the cut kernel j /Kn: here the

subscript on the lhs denotes the position of the s-channel gluon which generates the jet. A

pictorial representation of one of the equations (3.21) will illustrate their content:

1Z3;0 =
∑

+
∑

.

The amplitude 1Z3;0 contains the contributions from all the diagrams where the jet is

produced by the lowest s-channel gluon . Above, between the external photon and the jet,

the inclusive functions D2 and D3 appear. We finally note that the eqs. (3.19a-c) with the

initial conditions (3.21a-f) are free from infrared divergences.

3.3 The single-jet inclusive cross section: reduction

As the main step of our analysis we now perform the reduction which, similar to the

case of the total cross section, separates the reggeizing pieces with ’bad properties’ from

those which satisfy Ward identities and symmetry requirements. However, once we fix the

momenta of the jet, we can no longer expect to find the same symmetry properties as in the

case of the total cross section. For example, in figure 11a (the diffractive cut), N c
4 should

be symmetric in gluon pair 1 and 2, and in the pair 3 and 4, but not in 1 and 3 etc., in

figure 11b we expect symmetry in the triplet (123), and in figure 11c N c
4 is expected to be

symmetric in the pairs (13) and (24). In other words, we expect full symmetry on each side

4Note that /K2 ≡ 1 /K2. Here we have omitted to write explicitely the action in the color space as has

been shown in (3.5), but it should be understood that they are present.
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of the cutting line but not across the cutting line. Nevertheless, we still will find some left-

right symmetry: when summing over all different cuttings in (2.9), as for figure 4 in (2.5),

we also interchange the ladders attached to nucleon 1 and 2, assuming even signature in

the t channel. This signature property will show up also in the inclusive cross section.

Following the strategy developed in [10] for the total cross section, we begin with a

careful analysis of the initial conditions, which serves as a guideline for the reggeization

pattern. As a result, the amplitudes jZn will be written as a sum of a reggeized part (a

linear combination of solutions with < n reggeized gluons) and a irreducible part which

satisfies Ward identities and symmetry properties:

iZn = iZ
R
n + iZ

I
n (3.22)

2 Reggeized gluons:

The simplest case of two gluons (eq. (3.19a)) is trivial: there is only one gluon on each side

of the cutting line, and no reduction is necessary. The solution to the integral equation is

the evolution of the initial condition by means of the BFKL Green’s function G2:

Za1a2

2 =
(

G2(y − y1)/K2(p1)D2(y1)
)a1a2 . (3.23)

More explicitely, since D2 is a color singlet, Da1a2

2 = δa1a2D2, we can use the well known

relation fa′

1
a1bf ba2a′

1 = −Ncδ
a1a2 and factorize the color tensor from (3.23):

Z a1a2

2 = δa1a2Z2

Z2 = −NcG2(y − y1)/K2(p1)D2(y1) , (3.24)

where the operators are now those acting just in the transverse momentum space.

3 Reggeized gluons:

The case of three gluons, iZ3;0, is already already more involved. Namely the presence of

the jet breaks the coherence in the initial conditions, which, in the fully inclusive case, leads

to the complete reduction of D3 in terms of D2’s. In the present case this is no longer true.

Imposing the condition that, after subtraction of the reggeizing term iZ
R
3 , the irreducible

piece iZ
I
3 has to satisfy Ward identities, we find, after some calculations, that we have to

form even and odd combinations

iZ
±
3 (p1) =

1

2

(

iZ3(p1) ± iZ3(−p1)
)

(3.25)

Keeping in mind that, in order to arrive at the inclusive cross section, all transverse mo-

menta (except for p1) will be integrated, we have complete azimuthal symmetry, and the

negative signature combination does not contribute. We note, however, that the appear-

ance of even and odd combinations, from a signature point of view, is quite natural: in

figure 11a, the jet momentum p1 is equal to the momentum transfer across the left lower

Pomeron (flowing upwards) and across the right Pomeron (flowing downwards). When

interchanging the nucleons below, we thus reverse the direction of the jet momentum.
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Therefore, the two combinations in (3.25) belong to even and odd symmetry under inter-

change of the lower Pomerons. This distinction will become relevant, for example, for 2-jet

inclusive cross sections where azimuthal correlations come into play. In the following we

will always refer to the even combination. We use the average symbol:

〈iZn〉(p1) =
1

2

(

iZn(p1) + iZn(−p1)
)

. (3.26)

These signatured combinations satisfy the same set of eqs. (3.19a-c), with all the functions

being replaced by their symmetrized counterpart. This includes also the initial condi-

tions (3.21a-f).

Let us now proceed with the decomposition into reggeized and irreducible pieces:

〈iZn〉 = 〈iZn〉
R

+ 〈iZn〉
I
, (3.27)

the latter defining new effective production vertices which should satisfy Ward identities.

Imposing this condition, we find that the reggeized part has the same form as the one

appearing in the inclusive coupling D3 (see (3.14)):

〈1Z3〉
R

=
g

2
fa1a2a3

(

(12)3

〈Z2〉 −
(13)2

〈Z2〉 +
1(23)

〈Z2〉

)

=

=
1

2









+ +









(3.28)

〈2Z3〉
R

=
g

2
fa1a2a3

(

(12)3

〈Z2〉 −
2(13)

〈Z2〉 +
1(23)

〈Z2〉

)

=

=
1

2









+ +









.

(3.29)

Here 〈Z2〉 is obtained from (3.24) and (3.26):

〈Z2〉 = −Nc G2 /Γ2 D2 . (3.30)

/Γ2 is simply the symmetrized version of /K2 in the jet transverse momentum,

/Γ2 = 〈 /K2〉 =
1

2

(

/K2(p1) + /K2(−p1)
)

. (3.31)

On the rhs of (3.28), (3.29) the crosses mark the positions of the jet. In the first two terms

of (3.28) and in the last two terms of (3.29), one of the reggeized gluons is cut. As an

example, figure 18 illustrates the inner structure of the first term: On the rhs of (3.28), the

sum of the first two terms is symmetric under the exchange of gluon 2 and 3 (momenta

and color), the third one is antisymmetric. An analogous remark applies to (3.29).

– 21 –



J
H
E
P
0
6
(
2
0
0
8
)
0
3
2

Figure 18: Discontinuity inside a cut gluon.

The remaining irreducible part contains new effective production vertices i/Γ3:

〈1Z3〉
I

= −Ncf
a1a2a3G3 1/Γ3 D2 = , (3.32a)

〈2Z3〉
I

= −Ncf
a1a2a3G3 2/Γ3 D2 = , (3.32b)

where the the cross marks the position of the produced gluon inside the effective production

vertices i/Γ3. The detailed analytic expression of the vertex is presented in appendix A.3,

eqs. (A.13), (A.14a), (A.14b). It is important to point out that the i/Γ3 (i = 1, 2), when

acting on a gauge invariant impact factor φ with φ(kj = 0) = 0 (j = 1, 2), satisfy the

required Ward identities:
(

i/Γ3

)

φ(kj = 0) = 0, j = 1, 2, 3 , (3.33)

Moreover, due to the symmetry properties of i/Γ3

123

1/Γ3 = −
132

1/Γ3 ,
123

2/Γ3 = −
213

2/Γ3 , (3.34)

and of the color tensor fa1a2a3 = −fa1a3a2 = −fa2a1a3 , the amplitudes 〈iZ3〉
I

are

symmetric under the exchange of the two reggeized gluons on the same side of the cut

(both color and momentum).

4 Reggeized gluons:

For four reggeized gluons, 〈iZ4〉, it is again the initial conditions which suggest the reggeiza-

tion pattern. Following the analysis of the total cross section, it is convenient to separate

the reggeizing part into two pieces,

〈iZ4〉
R

= 〈iZ4〉
R1

+ 〈iZ4〉
R2
. (3.35)
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The R1 component is the same for any position of the s-channel cut, i = 1, 2, 3, and it coin-

cides with the expression obtained in [10] for the reggeized part of the inclusive couplingD4,

〈iZ4〉
R1

= − g2da1a2a3a4

((123)4

〈Z2〉 +
1(234)

〈Z2〉 −
(14)(23)

〈Z2〉

)

+

− g2da1a2a4a3

((124)3

〈Z2〉 +
(134)2

〈Z2〉 −
(12)(34)

〈Z2〉 −
(13)(24)

〈Z2〉

)

(3.36)

Here we have introduced another compact notation, e.g.
(123)4

〈Z2〉 = 〈Z2〉(k123,k4) and
(12)(34)

〈Z2〉 = 〈Z2〉(k12,k34). For the case i = 2 (where the cut runs between reggeon 2 and 3)

we illustrate this equation as follows.

〈2Z4〉
R1

= + +

+ + + + . (3.37)

The interpretation is analogous to the discussion after (3.31). In the first diagram in the

first line the cut runs between the reggeons. All diagrams on the second line contain a cut

reggeon; if we open any of these diagrams we find structures like those of figure 18. The

second and third diagrams of the first line have both reggeons cut.

The R2 component is different for each cut and is expressed in term of the vertex /Γ3

defined in (A.13),

〈1Z4〉
R2

= gNcd
a1a2a3a4

(

1(23)4

G3 −
14(23)

G3

)

/Γ3 D2 +

+gNcd
a1a2a4a3

(

1(24)3

G3 −
13(24)

G3

)

/Γ3 D2 + (3.38a)

+gNcd
a1a3a4a2

(

1(34)2

G3 −
12(34)

G3

)

/Γ3 D2

= ,
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〈2Z4〉
R2

= gNcd
a1a2a3a4

(

1(23)4

G3 +
2(14)3

G3 −
(12)43

G3 −
21(34)

G3

)

/Γ3 D2 + (3.38b)

+gNcd
a1a2a4a3

(

1(24)3

G3 +
2(13)4

G3 −
(12)34

G3 −
12(34)

G3

)

/Γ3 D2

=

〈3Z4〉
R2

= gNcd
a1a2a3a4

(

1(23)4

G3 −
(23)14

G3

)

/Γ3 D2 +

+gNcd
a2a1a3a4

(

2(13)4

G3 −
(13)24

G3

)

/Γ3 D2 + (3.38c)

+gNcd
a3a1a2a4

(

3(12)4

G3 −
(12)34

G3

)

/Γ3 D2

(in the last equations, the diagrams are analogous to those of the first equation, eq. (3.38c)).

Let us note that eqs. (3.38a) and (3.38c) can be easily written in terms of 1/Γ3 and 2/Γ3

making use of the relations (A.14a), (A.14b) and then one may recognize a form with a

sum of three terms 〈1Z3〉
I

and 〈2Z3〉
I

respectively, with a gluon splitting at rapidity Y .

The irreducible part of 〈iZ4〉 consists of four pieces:

〈iZ4〉 = 〈iZ4〉
I1

+ 〈iZ4〉
I2

+ 〈iZ4〉
I3

+ 〈iZ4〉
I4
. (3.39)

In the first term the jet emission is above the effective vertex V4, inside the BFKL ladder.

Here all values of i lead to the same expression, i.e. the contribution is independent of the

position of the cut,

〈iZ4〉
I1

=

∫ y

y1

dy′ G4(y − y′) V4 〈Z2〉(y
′) =

〈X〉

. (3.40)

The appearance of the same vertex V4 below the emission of the jet is a remarkable result

of our analysis: within our approach it is absolutely not trivial, since a priori one might

expect the emission of the jet to break the reggeization pattern leading to V4.

Let us stress that the 2 → 4 vertex is fully symmetric under the exchange of any pair

of gluons, and it satisfies the Ward identities in all four gluon lines. This property implies

that also the first and the second term in eq. (3.39) satisfy the Ward identities, and they

have the required symmetry features on both sides of the cut.

The second term can be illustrated by the following figure:

〈iZ4〉
I2

=
∑

.

.
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The jet is emitted below the 2 → 4 vertex, inside the four gluon state, and the label i

singles out the participating rungs. For example, for i = 1 the possible rungs are between

gluon 1 and 2, between 1 and 3, or between 1 and 4. Above the emission we have the

same structure, DI
4, as the total cross section. In particular, it contains, again, the 2 → 4

effective vertex V4 of [10]. Writing as usual

D4 = DR
4 +DI

4

DI
4 =

∫ y1

y0

dy′ G4(y1, y
′) V4 D2(y

′) , (3.41)

we have

〈1Z4〉
I2

= G4

(

12

/Γ2 +
13

/Γ2 +
14

/Γ2

)

DI
4 , (3.42a)

〈2Z4〉
I2

= G4

( 13

/Γ2 +
14

/Γ2 +
23

/Γ2 +
24

/Γ2

)

DI
4 , (3.42b)

〈3Z4〉
I2

= G4

( 14

/Γ2 +
24

/Γ2 +
34

/Γ2

)

DI
4 , (3.42c)

The third group of terms contains new effective production vertices i/V4:

〈2Z4〉
I3

= G4 2/V4 D2 = , (3.43)

with analogous expressions for 〈1Z4〉
I3

and 〈3Z4〉
I3

. The produced jet is inside the 2 → 4

transition vertex, and the new production vertices are conveniently expressed in terms of

new cut operators i/Γ4 defined in appendix A.3, eq. (A.15):

1/V4 = δa1a2δa3a4

1234

1/Γ4 + δa1a3δa2a4

1324

1/Γ4 + δa1a4δa2a3

1423

1/Γ4 , (3.44a)

2/V4 = δa1a2δa3a4

1234

2A/Γ4 + δa1a3δa2a4

1234

2B /Γ4 + δa1a4δa2a3

1243

2B /Γ4 , (3.44b)

3/V4 = δa1a2δa3a4

1234

3/Γ4 + δa1a3δa2a4

1324

3/Γ4 + δa2a3δa1a4

2314

3/Γ4 . (3.44c)

One can show that the operators i/Γ4 satify Ward identities. This then also holds for the

vertices (3.44a-c). Moreover, due to the symmetry properties of i/Γ4,

1234

1/Γ4 =
1243

1/Γ4 ,
1234

2A/Γ4 =
1243

2A/Γ4 =
2134

2A/Γ4 =
2143

2A/Γ4 ,
1234

2B/Γ4 =
2143

2B /Γ4 , (3.45)
1234

3/Γ4 =
2134

3/Γ4 ,

i /V4 are symmetric under the exchange of any two gluons (color and momentum) on each

side of the s-channel cut.
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The fourth group of terms part is novel and has no counterpart in the total cross

section. Then transition from two gluons to four gluons now proceeds in two steps, and the

produced jet is inside the 2 → 3 vertex. For the cut line on the lhs (i = 1), it has the form

〈1Z4〉
I4

= Nc

∫ y

y1

dy′ G4(y − y′) 1W4 G3(y
′ − y1) /Γ3 D2(y1) = . (3.46)

For the cut on the rhs (i = 3) we have an analogous expression, whereas the central cut

(i = 2) receives two contributions:

〈2Z4〉
I4

= (3.47)

= Nc

∫ y

y1

dy′ G4(y − y′) 2W4 G3(y
′ − y1) /Γ3 D2(y1) = + .

The 2 → 3 vertex with the jet is the same as introduced before and given in appedix

in eq. (A.13). eq. (3.32). Below this vertex, a t-channel state of three reggeized gluons

appears which, after BKP evolution, through new effective vertices iW4, turns into four

reggeized gluons. These new 3 → 4 transition vertices are conveniently expressed in terms

of the integral (uncut) operators iΓ4 which are listed in appendix A.3 (eqs. (A.16)):

1W4 = δa1a2δa3a4

1234

1Γ4 + δa1a3δa2a4

1324

1Γ4 + δa1a4δa2a3

1423

1Γ4 , (3.48a)

2W4 = δa1a2δa3a4

1234

2AΓ4 + δa1a3δa2a4

1234

2BΓ4 + δa1a4δa2a3

1243

2BΓ4 , (3.48b)

3W4 = δa1a2δa3a4

1234

3Γ4 + δa1a3δa2a4

1324

3Γ4 + δa2a3δa1a4

2314

3Γ4 . (3.48c)

The iΓ4 have the same symmetry properties (3.45) as their cut counterparts. Therefore,

also the effective vertices 1W4 are symmetric under the exchange of gluons on each side of

the cut. Furthermore, they can be shown to satisfy Ward identities. Again one may note

that for the cut on the lhs (i = 1) or on the rhs (i = 3) it is trivial to rewrite 〈1Z4〉
I4

,

〈3Z4〉
I4

in terms of 1W4 and 1/Γ3, 3W4 and 2/Γ3, respectively.

Let us summarize our results for 〈iZ4〉 in eqs.((3.19c)). For each position of the cutting

line - denoted by 1 = 1, 2, 3 - we have reggeizing and irreducible pieces. The irreducible

pieces, for the case i = 1 and i = 2, are collected in figures 19 and 20, resp.: They satisfy

the Ward identities, and they are invariant under permutations of the gluons on both sides

of the cut. They come in four different classes of contributions. If the jet is produced above

or below the 2 → 4 transition vertex (groups 1 and 2, figures 19 a and b), the contributions

are identical for all cuts (i.e. independent of i). The 2 → 4 vertex is the same as in the

total cross section. As a result, these contributions can be added in the same way, as in the
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Figure 19: The four pieces of the single jet inclusive cross section. (a) and (b): production above

and below the 2 → 4 transition, (c) and (d): production inside the 2 → 4 transition.

Figure 20: The same as figure 19, for the cut i = 2.

Figure 21: Inclusive jet production with higher order color correlaters inside the two-nucleon

target.

case of the total cross section, In particular, Group 2 will cancel, due to the AKG counting

rules [9]. If the jet is produced inside the 2 → 4 transition (groups 3 and 4, figures 19c

and d), the cuts i = 1, 2, 3 differ from each other, and the vertices are new. In particular,

there is a novel contribution (figure 19d) which contains a t-channel state consisting of 3

reggeized gluons.

Finally, let us comment on the reggeizing pieces which do not satisfy Ward identities

and symmetry requirements. Here we have found two groups which are illustrated in

eqs. (3.37) and (3.38a)–(3.38c). As we have discussed at the end of section 3.1, these

contributions introduce higher order correlators inside the target. We illustrate them in

figure 21: A more detailed discussion will be given elsewhere, and for the rest of this paper

we will restrict our discussion to the irreducible pieces which constitute the two Pomeron

contribution to the inclusive cross section.
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4. The 1-jet inclusive cross section

In the previous section we have described the computation of the triple discontinuities of

the amplitudes, with one gluon being fixed in transverse momentum p1 and rapidity y1.

Due to this gluon, the decomposition into reggeized and irreducible pieces has turned out

to be quite different from the total cross section.

Let us now make use of these triple discontinuites and return to the inclusive cross

section in eq. (2.9). Beginning with the term N c
4(1, 2|3, 4; y1,p1), we use figure 20 and

attach nucleon 1 to lines 1 and 2 and nucleon 2 to lines 3 and 4. Similarly, the second

term N c
4(3, 4|1, 2; y1,p1) is obtained by interchanging nucleons 1 and 2. In the last term,

N c
4(1, 3|2, 4; y1 ,p1), we connect nucleon 1 with the gluon lines 1 and 4. Because of the

symmetry under the exchange of gluons on both sides of the cut, we do not need to

distinguish between N c
4(1, 3|2, 4; y1 ,p1) and N c

4(1, 4|2, 3; y1 ,p1). For the third and fourth

lines on the rhs of eq. (2.9), we use figure 19. Again, the symmetry on the rhs of the cutting

line allows to identify, for example, N c
4(1, 2, 3|4; y1,p1) and N c

4(1, 3, 2|4; y1,p1).

For each of these terms, we have the four groups corresponding to the figures 19a–d or

figures 20a–d. As we have said before, for the first two groups the different cuts i = 1, 2, 3

lead to the same result. Hence we can, in eq. (2.9), simply sum over the phase factors.

This leads, in the case of the first group (figure 19a and 20a) to the usual AGK counting:

2 - 8 + 4 = -2. In the second group (figures 19b and 20b) we find complete cancellation [9]:

2 - 6 + 4 = 0.5 In contrast to this, for the remaining contributions to the inclusive cross

section there is no simple way of summing the different cuts, and the inclusive cross section

remains of the form given in eq. (2.9). For the first group (two groups (figures 19c and

20c) we illustrate the integrand of eq. (2.9) in the following equation:















ξ1ξ
∗
2

∑

+ ξ2ξ
∗
1

∑

+

+2 Imξ1















(iξ2)
∗
∑

+ c.c.















+ 2 Imξ2















iξ1
∑

+ c.c.















+4Imξ1Imξ2
∑















(4.1)

5Here we make use of the fact that the coupling of the two gluon pairs to the two nucleons also satifies

the symmetry properties: invariance under the interchange of the two nucleons, and - for each nucleon

separately - symmetry under interchange of the two gluons.
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In this expression above in the first line, which corresponds to the ’diffractive cut’, one has

to insert all the contributions constructed with the effective vertex 2/V4 given in eq. (3.44b),

inserted in eq. (3.43). The two contributions with complex conjugate phase factors are

associated to the two possible ways of coupling to the two nucleons in the deuteron. The

’single absorptive cut’ contribution in the second line of eq. (4.1), is given by the sum of 4

terms, two associated with the jet produced along the cut which goes to one nucleon and the

other two when the cut goes through the second nucleon. The two cases are constructed

similarly to the previous one employing the vertices 1/V4 and 3/V4 given respectively in

eqs. (3.44a) and (3.44c). The third line) in eq. (4.1) is associated to the ’double cut’

contribution, and it is built again from 2/V4. The coupling to the nucleons selects the

structure equivalent to N c
4(1, 3|2, 4) = N c

4(2, 3|1, 4) and is associated to a purely real phase.

Because of the symmetry of N c
4 under permutations on both sides of the cutting line we

do not need to include another term with nucleons 1 and 2 interchanged. Let us note that

in our approximation we shall choose purely imaginary BFKL pomeron phases, ξ1,2 = i.

The final group (figures 19d and 20d) is illustrated in the following equation:
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. (4.2)

These terms are novel and quite peculiar since they are characterized by the emission of

a jet inside the effective vertices /Γ3 and i/Γ3 which allow, in the t-channel, the transition

from 2 to 3 reggeized gluons. After rapidity evolution a second splitting, described by the

vertices iW4 is taking place. In this effective 3 → 4 transition there is always one gluon

which acts as a spectator. Finally, the resulting t-channel four gluon state, after a BKP

evolution, is coupled to the deuteron form factor.

The ’diffractive contributions’ in the first line are constructed using the effective vertex
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Figure 22: The large-Nc approximation (a) production above the 2 → 4 transition, (b) production

inside the 2 → 4 transition, (c) production in the 2 → 3 transition.

/Γ3, given in eq. (A.13) of appendix A.3, which contains contributions from the jet emitted

in the two possible positions. The subsequent 3 → 4 transition is described by the effective

vertex 2W4, given in eq. (3.48b). One is therefore led to use eq.(3.47), which has to be

integrated with the four reggeon Green’s functions and the deuteron form factor. The

’single absorptive cut’ contributions in the second line of eq. (4.2) are expressed in terms of

the effective vertices 1/Γ3 and 2/Γ3 (or also using /Γ3 as in eq. (3.46)) defined in eq. (A.14) of

appendix A.3. They contain contributions from the jet emitted only on the left or on the

right of the effective 2 → 3 vertex. These two cases are associated to two corresponding

3 → 4 splittings described by the effective vertices 1W4 and 3W4, listed in eqs. (3.48a)

and (3.48c), respectively.

Finally the ’double cut contribution’ in the third line of eq. (4.2)) is, again, constructed

in the same way as the diffractive case, with the produced gluon inside the effective 2 → 3

vertex being either on the left or on the right hand side. What distinguishes this case from

the diffractive one is the coupling to the deuteron form factors.

We complete this section with the large-Nc limit which somewhat simplifies our re-

sults. As the main feature, the four-gluon evolution above the two nucleons turns into

two non-interacting BFKL Pomerons, one for each nucleon. We illustrate this in figure 22:

In the first contribution, shown in figure 22a (which corresponds to figure 19a and fig-

ure 20a), these two Pomerons couple directly to the 2 → 4 vertex, selecting the color

structure δa1a2
δa3a4

. This is the triple Pomeron vertex, which also appears in the nonlinear

Balitsky Kovchegov (BK) evolution equation [35]. In the second contributions illustrated

in figure 22b (corresponding to figures 19c and 20c), the two Pomerons couple to the new

production vertex i/V4 listed in eqs.(3.44a) - (3.44c), and the different cut positions lead to

different expressions for the vertex. For each i, only one of the color structures contributes

to the large-Nc limit. We expect that the rather lengthy expressions for the vertices that

we have obtained may simplify, if we make use of the Moebius representation of the BFKL
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Pomerons. This will be discussed in a subsequent paper. Finally the new contribution in

figure 22c (corresponding to figures 19d and 20d): here the two Pomerons arrive at the

effective 3 → 4 vertices, iW4, listed in eqs.(3.48a) - (3.48c). Again, each cut picks one color

structure, dismissing the other ones as subleading. In particular, there is no Nc supression

of this novel piece with the 3 gluon contribution. Again, simpflifications of the kernels will

be discussed elsewhere. Note that the jet production from one of the two ladders below

the 2 → 4 vertex cancels because of the AGK rules.

5. Conclusions

In this paper we have investigated, within the BFKL framework of pQCD, the single-jet

inclusive cross section in the scattering of a virtual photon on a weakly coupled nucleus

(deuteron). We have identified the two-Pomeron exchange between the jet and the nucleus,

and we have derived an analytic expression for the jet vertex. Invoking Regge factorization,

the same vertex can also be used in pp collisions where the jet, in rapidity, is close to one

of the protons, but has a large rapidity separation from the other proton. Our analysis has

been done in momentum space, and we stress that the results are valid for finite Nc.

On the theoretical side, our analyis shows several new features. First, the jet vertex

contains a new structure not seen before, namely a three gluon t-channel state which, in a

total cross section, would violate signature conservation and, hence, never appears. This

contribution to the jet production vertex is not suppressed in the limit Nc → ∞, and

there are no extra powers in g2 which are not compensated by factors ln 1/x. This latter

statement simply follows from the fact that all our results are derived from production am-

plitudes which are all of the same order: g2×g2×g2×
∑

k(g
2y)k×g4 (where the last factor g4

belongs to the coupling to the nucleons), and all subsequent steps amount to a re-ordering6

This last term the last term seems to be missing in previous studies, in particular in

both [2] and [6], and we feel that it is very important to clarify this discrepancy. Whereas,

at the moment, we feel unable to comment on [2], we do see a possible reason why [6]

does not find this piece. At first sight, [6] follows a strategy very similar to ours. It starts

from discontinuities, computed in momentum space, and it then separates reggeizing pieces

from nonreggeizing ones. In contrast to our strategy, however, this separation is done in

the same way as for the total cross section, i.e. before fixing the momenta of the jet. In

our approach, however, we do the separation of reggeizing and irreducible pieces only after

fixing the momenta of the jets. As it turns out, the results for the inclusive cross section

do depend on the order of these steps. Connected with these new contributions are new

production vertices and transition vertices of reggeized gluons, which represent building

blocks of QCD reggeon field theory.

In order to clarify the connection of our result with those of, e.g., [2 – 4] it will be useful

to first translate our results into configuaration space, making use of the Moebius represen-

tation [39], and also taking the large-Nc limit. We plan to do this in a forthcoming work

6In particular, the contributions in figure 22c are of the same order as those of figure 22a: the 3 → 4

gluon vertex is of the order g3 (cf. eq. (A.16a)), i.e. in the transition from 3 to 4 gluons one gluon remains

a ’spectator’.
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Returning to the further interpretation of our analysis, they also shows that, for the

two-Pomeron exchange in the inclusive cross section formula, the AGK counting rules have

to be used with care: if the jet is produced inside the 2 → 3 or the 2 → 4 transition vertex,

the relative weights of the different cuttings across the two Pomeron exchange differ from

the AGK counting derived for the total cross section. This supports the findings of [2, 6].

On the other hand, the cancellation of the rescattering corrections across the jet vertex

remains valid and has been confirmed by our analysis.

Another result is the appearance of the reggeizing pieces. In the inclusive cross section

formula, reggeizing pieces belong to single BFKL ladder. They appear in the coupling to

the nucleus and introduce higher order correlators between the nucleons.

As to practical applications, the most interesting aspect, at present, is the search for

saturation. For the total γ∗ nucleus cross section, the high energy behavior (small-x limit),

in the large-Nc approximation, is described by the nonlinear Balitsky-Kovchegov (BK)

evolution equation, and solutions to this equation have been investigated in some detail.

In order to derive the BK equation in momentum space one investigates the scattering of

a virtual photon on nuclear targets consisting of 2, 3,. . . nucleons and separates reggeizing

and nonreggeizing contributions. For the case of 2 nucleons, the corresponding QCD

diagrams have been analyzed before (and summarized in this paper), and the validity of

the BK equation is intimately connected with the dominance of the ’fan-like’ structure of

the QCD ladder diagrams. In particular, there is no direct coupling of two Pomerons to

the photon impact factor, and the splitting of a single Pomeron into two Pomerons goes

via the 2 → 4 gluon vertex which, in the large-Nc limit, coincides with the integral kernel

of the BK equation.

As the main intention of the present paper was the generalization of this analysis,

from the total cross section to the single inclusive cross section, we can, again, look at the

structure the leading QCD-diagrams, illustrated in figure 22. The first term, figure 22a,

suggests that, below the 2 → 4, we see the beginning of the same fan-like structure as

in the total cross section. That is, when generalizing our analysis to the scattering on a

nucleus consisting of 3 or more nucleons, we expect to see the fan structure which sums

up to the familiar nonlinear BK-equation. The second and the third terms (figure 22b and

c), however, do not fit into this pattern: the evolution below the jet vertex starts with

double Pomeron exchange, and in the last term the new three gluon state introduces a

new Pomeron component which survives in the large-Nc limit. One might interpret it as a

nonlocal (in rapidity) contribution to the effective 2 → 4 transition vertex.

A comment on kt factorization might be in place. The structure of our large-Nc cross

section can be read off from figure 22. All three contribtions to the inclusive cross section

have in common that, in transverse momentum, they factorize into a production vertex

and gluon amplitudes above and below the vertex. In detail, however, there are some

differences compared to the usual factorization pattern. In the first term, figure 22a, we

still have the usual kt-factorization: momentum dependent amplitudes (unintegrated gluon

densitities) from above and below, convoluted (in transverse momentum) with the gluon

emission vertex. In figure 22b, we still have, above the gluon emission, a single unintegrated

gluon density, whereas from below we now have two gluon amplitudes, and this leads to a
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threefold transverse momentum integration. In figure 22c, the emission vertex has a single

gluon density from above, a three gluon amplitude from below. Figures 22b and c thus

introduce gluon correlation functions of four and three gluons, resp. It is the three-gluon

correlator which seems to be absent in previous studies. In order to understand the further

rapidity evolution of figures 22 b and c it will be necessary to study the scattering of a

photon on a three nucleon state.

Finally, one might wonder how our result would generalize in the analysis of the equa-

tions describing the corrections to inclusive two-jet production cross sections. This case

has been considered in the framework of the color dipole-CGC picture [40]. Clearly we ex-

pect the pattern of gluon reggeization to be broken further, leading possibly to new terms

with even higher order gluon correlators. This is a challenging analysis which we hope to

address in the future.
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A. Appendices

A.1 Color identities

The structure of the SU(Nc) algebra is determined by the structure constant fabc fixing

the commutation relations [ta, tb] = ifabctc, with the generators ta normalized such that

tr(tatb) = δab/2. From the generators is possible to get the structure constants via

fa1a2a3 = −2i(tr(ta1ta2ta3) − tr(ta3ta2ta2)) , (A.1)

and defining the symmetric structure constant da1a2a3 through the anticommutators of the

generators,

{ta1 , ta2} =
1

Nc
δa1a2 + da1a2a3ta3 , (A.2)

we have

da1a2a3 = 2(tr(ta1ta2ta3) + tr(ta3ta2ta2)) . (A.3)

It turns out to be useful to define as well tensors fa1...an and da1...an for n > 3:

fa1a2...an = −i
(

tr(ta1t
a2 . . . tan) − tr(tan . . . ta2ta1)

)

, (A.4a)

da1a2...an = tr(ta1t
a2 . . . tan) + tr(tan . . . ta2ta1) . (A.4b)

Both f and d tensors are evidently invariant under cyclic permutation, and moreover fa1a2a3

is antisymmetric under the transposition of two indices, while da1a2a3 is symmetric.

fa1a2a3 = −fa2a1a3 (A.5a)

da1a2a3 = da2a1a3 (A.5b)

– 33 –
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A very useful relation is the Fierz identity,

(ta)i1i2(t
a)j1j2 =

1

2
δi1j1δi2j2 −

1

2Nc
δi1i2δj1j2 . (A.6)

Other essential relations are the Jacobi identity,

fa1a2bf ba3a4 − fa1a3bf ba2a4 + fa1a4bf ba2a3 = 0 , (A.7)

the decomposition of da1a2a3a4 in terms of rank three tensors,

da1a2a3a4 =
1

4

(

da1a2bdba3a4 − fa1a2bf ba3a4

)

+
1

2Nc
δa1a2δa3a4 , (A.8)

and some contractions of various tensors

f b1a1b2f b2a2b1 = −Ncδ
a1a2 , (A.9a)

f b1a1b2f b2a2b3f b3a3b1 = −
Nc

2
fa1a2a3 , (A.9b)

db1a1b2f b2a2b3f b3a3b1 = −
Nc

2
da1a2a3 , (A.9c)

f b1a1b2f b2a2b3f b3a3b4f b4a4b1 = Nc d
a1a2a3a4 +

+
1

2
(δa1a2δa3a4 + δa1a3δa2a4 + δa1a4δa2a3) , (A.9d)

da1a2b1b2f b1a3cf ca4b2 = −
Nc

2
da1a2a3a4 −

1

4
δa1a2δa3a4 , (A.9e)

da1b1a3b2f b1a2cf ca4b2 =
1

4
δa1a2δa3a4 +

1

4
δa1a4δa2a3 . (A.9f)

A.2 The 2-to-4 effective vertex V4

The integral operators iΓn are given in terms of the infrared safe G function (first introduced

in [10] in the forward direction and later generalized and investigated in [36, 37]). Its action

on a two gluon function φ is given by

Gφ2 = K3φ+
g

Nc

(

2
ω

(1·)3

φ +
2
ω

1(·3)

φ −
(12)
ω

·3
φ −

(23)
ω

1·
φ

)

. (A.10)

This object is nothing but a regularized version of the two-to-three operator K3, being the

trajectories in (A.10) the precise subtraction terms necessary to get rid of the divergences.

Note that when the transverse momentum k2 of the central leg is put to zero, G reduces

to the singlet version of the BFKL operator H; we indicate k2 = 0 putting a small circle

◦ in its position:

δa1a2

1◦2
G φ = −

Nc

g

12
H2φ , (A.11)

with φ a two gluon color neutral function. The vertex V4 introduced in (3.18) is then

defined by

V4 = δa1a2δa3a4

1234
V + δa1a3δa2a4

1324
V + δa1a4δa2a3

1423
V , (A.12)
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where the operator V , which is Möbius invariant [38, 36], is defined as

1234
V φ =

g

2

(

1(23)4

G +
1(24)3

G +
2(13)4

G +
2(14)3

G +
(12)◦(34)

G +

−
(12)34

G −
(12)43

G −
12(34)

G −
21(34)

G

)

··

φ .

A.3 Definitions of the operators i/Γn and iΓn

The effective vertices i/Γ3 describing the transition 2-to-3 reggeized gluons with associated

jet production are conveniently expressed in term of an auxiliary operator /Γ3 defined as

/Γ3φ =
1

2

(

g
(13)2

〈 /K2〉 −
132

〈1 /K3〉 −
213

〈2 /K3〉

)

··

φ−
g

2

13

〈 /K2〉
(··)2

φ . (A.13)

In terms of /Γ3 we have

1/Γ3φ =
1

2

(123

/Γ3 −
132

/Γ3

)

, (A.14a)

2/Γ3φ =
1

2

(

123

/Γ3 −
213

/Γ3

)

. (A.14b)

In the case of the transitions 2-to-4 there are four different vertices, one each for the

cuts 1 and 3 and two for the cut 2. They are

1/Γ4φ =
1

4

(

2134

〈2 /K4〉 +
2314

〈2 /K4〉 + g
1(23)4

〈1 /K3〉 − g
(12)34

〈1 /K3〉 − g
23(14)

〈2 /K3〉

)

··

φ+

+
g

4

134

〈1 /K3〉
(··)2

φ +
g

4

132

〈1 /K3〉
(··)4

φ + (3 ↔ 4) + (A.15a)

+
1

4

(

g2
(12)(34)

〈 /K2〉 + g2
(134)2

〈 /K2〉 − g
12(34)

〈1 /K3〉 − g
21(34)

〈2 /K3〉 + g
1(34)2

〈1 /K3〉 − g
(34)12

〈2 /K3〉

)

··

φ+

−
g2

4

1(34)

〈 /K2〉
(··)2

φ −
g2

4

12

〈 /K2〉
(··)(34)

φ ,

2A/Γ4φ =
1

4

( 1234

〈2 /K4〉 +
1324

〈2 /K4〉 − g
(23)14

〈1 /K3〉 − g
14(23)

〈2 /K3〉 + g2
(13)(24)

〈 /K2〉

)

··

φ+

+
g

4

234

〈1 /K3〉
1(··)

φ +
g

4

123

〈2 /K3〉
(··)4

φ

+ (1 ↔ 2) + (3 ↔ 4) + (1 ↔ 2, 3 ↔ 4) + (A.15b)

+
g

4

( 3(12)4

〈2 /K3〉 −
(12)34

〈1 /K3〉

)

··

φ−
g2

4

(123)4

〈 /K2〉
··

φ−
g2

4

(12)3

〈 /K2〉
(··)4

φ + (3 ↔ 4) +

+
g

4

( 1(34)2

〈1 /K3〉 −
12(34)

〈2 /K3〉

)

··

φ−
g2

4

1(234)

〈 /K2〉
··

φ−
g2

4

2(34)

〈 /K2〉
1(··)

φ + (1 ↔ 2) +

+
g2

2

(12)(34)

〈 /K2〉
··

φ ,
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2B /Γ4φ =
1

4

( 1234

〈2 /K4〉 +
1324

〈2 /K4〉 + g
1(34)2

〈1 /K3〉 + g
3(12)4

〈2 /K3〉 − g
13(24)

〈1 /K3〉 − g
(13)24

〈2 /K3〉 +

−g
(13)24

〈1 /K3〉 − g
13(24)

〈2 /K3〉 + g2
(13)(24)

〈 /K2〉

)

··

φ+

+
g

4

234

〈1 /K3〉
1(··)

φ +
g

4

123

〈2 /K3〉
(··)4

φ −
g2

4

13

〈 /K2〉
(··)(24)

φ

+ (1 ↔ 2, 3 ↔ 4) + (A.15c)

+
g

4

( 3(12)4

〈2 /K3〉 −
(12)34

〈1 /K3〉

)

··

φ−
g2

4

(123)4

〈 /K2〉
··

φ−
g2

4

(12)3

〈 /K2〉
(··)4

φ + (3 ↔ 4) +

+
g

4

( 1(34)2

〈1 /K3〉 −
12(34)

〈2 /K3〉

)

··

φ−
g2

4

1(234)

〈 /K2〉
··

φ−
g2

4

2(34)

〈 /K2〉
1(··)

φ + (1 ↔ 2) +

+
g2

2

(12)(34)

〈 /K2〉
··

φ ,

3/Γ4φ =
1

4

(

1243

〈2 /K4〉 +
1423

〈2 /K4〉 + g
1(23)4

〈2 /K3〉 − g
12(34)

〈2 /K3〉 − g
(14)23

〈1 /K3〉

)

··

φ+

+
g

4

124

〈2 /K3〉
3(··)

φ +
g

4

324

〈2 /K3〉
1(··)

φ + (1 ↔ 2) + (A.15d)

+
1

4

(

g2
(12)(34)

〈 /K2〉 + g2
3(124)

〈 /K2〉 − g
(12)34

〈2 /K3〉 − g
(12)43

〈1 /K3〉 + g
3(12)4

〈2 /K3〉 − g
34(12)

〈1 /K3〉

)

··

φ+

−
g2

4

(12)4

〈 /K2〉
3(··)

φ −
g2

4

34

〈 /K2〉
(12)(··)

φ .

The integral operators iΓn are given in terms of the infrared safe G function defined

in (A.10). Analougusly to (A.15), there are two different operators for the central cut:

1Γ4φ =
1

4

(

+
234
G

1··
φ −

432
G

1··
φ +

134
G

·2·
φ −

134
G

··2
φ +

132
G

·4·
φ −

132
G

··4
φ − (3 ↔ 4)

)

+

+
g

4

(

−
2◦(34)

G
1··
φ +

(34)◦2

G
1··
φ −

1◦(34)

G
·2·
φ +

1◦(34)

G
··2
φ −

1◦2
G

·(34)·

φ +
1◦2
G

··(34)

φ

)

, (A.16a)

2AΓ4φ =
1

4

(

123
G

··4
φ +

234
G

1··
φ +

124
G

·3·
φ +

134
G

·2·
φ −

132
G

··4
φ −

234
G

1··
φ +

+(1 ↔ 2) + (3 ↔ 4) + (1 ↔ 2, 3 ↔ 4)

)

+

+
g

4

(

1◦2
G

··(34)

φ −
2◦(34)

G
1··
φ −

1◦(34)

G
·2·
φ − (1 ↔ 2)

)

+ (A.16b)

+
g

4

(

−
3◦4
G

(12)··

φ −
(12)◦3

G
··4
φ −

(12)◦4

G
·3·
φ + (3 ↔ 4)

)

,

2BΓ4φ =
1

4

(

−
213
G

··4
φ −

134
G

2··
φ +

214
G

·3·
φ +

234
G

·1·
φ −

231
G

··4
φ −

314
G

2··
φ + (A.16c)

+g
2◦(13)

G
··4
φ + g

(13)◦4

G
2··
φ − g

2◦4
G

·(13)·

φ + (1 ↔ 2, 3 ↔ 4)

)

,

– 36 –



J
H
E
P
0
6
(
2
0
0
8
)
0
3
2

3Γ4φ =
1

4

(

123
G

··4
φ −

321
G

··4
φ +

124
G

·3·
φ −

124
G

3··
φ +

324
G

·1·
φ −

324
G

1··
φ + (1 ↔ 2)

)

+ (A.16d)

+
g

4

(

−
(12)◦3

G
··4
φ +

3◦(12)

G
··4
φ −

(12)◦4

G
·3·
φ +

(12)◦4

G
3··
φ −

3◦4
G

·(12)·

φ +
3◦4
G

(12)··

φ

)

.

The Ward identities fulfilled by all these operators (cut and uncut) can be verified

directly from these expressions. Moreover, thanks to the properties of the function G [36],

these operators define Möbius (conformal) invariant objects.
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